
January 1999 The Delphi Magazine 57

COM Corner:
Automation Collections
by Steve Teixeira

Let’s face it: we programmers
are obsessed with bits of soft-

ware code that serve as containers
for other bits of software code.
Think about it: whether it’s an
array, a TList, a TCollection, a tem-
plate container class for the C++
folks, or a Java Vector, it seems
that we’re always in search of the
proverbial better mousetrap for
software objects that hold other
software objects. If you consider
the time invested over the years in
this pursuit of the perfect con-
tainer class, it is clear that this is an
important problem in the minds of
developers. And why not? This log-
ical separation of container and
contained entities helps us better
organize our algorithms and maps
to the real world rather nicely (a
basket can contain eggs, a pocket,
coins, a parking lot, autos, etc). It
seems that, whenever I learn a new
language or development model, I
have to learn ‘their way’ of
managing groups of entities. Which
leads to my point: like any other
software development model,
COM also has its ways for manag-
ing these kinds of groups of enti-
ties, and to be an effective COM
developer, we must learn how to
master these things.

When we work with the
IDispatch interface, COM specifies
two primary methods by which we
represent the notion of
containership: arrays and collec-
tions. If you’ve done a bit of Auto-
mation or ActiveX control work in
Delphi, you will probably already
be familiar with arrays. You can
easily create automation arrays in
Delphi by adding an array property

to your IDispatch descendant
interface or dispinterface as shown
in Listing 1.

Arrays are useful in many cir-
cumstances, but they pose some
limitations. For example, arrays
make sense when you have data
that can be accessed in a logical,
fixed-index manner, such as the
strings in an IStrings. However, if
the nature of the data is such that
individual items are frequently
deleted, added, or moved, then an
array is a poor container solution.
The classic example is a group of
active windows. Since windows are
constantly being created,
destroyed and changing z-order,
there is no solid criterion for deter-
mining in what order the windows
should appear in the array.

Collections are designed to
solve this problem by allowing you
to manipulate a series of elements
in a manner that doesn’t imply any
particular order or number of
items. Collections are unusual
because there isn’t really a collec-
tion object or interface, but a col-
lection is instead represented as a
custom IDispatch that follows a
number of rules and guidelines.
The following three rules must be
adhered to in order for an
IDispatch to qualify as a collection.

First, collections must contain a
_NewEnum property that returns the
IUnkown for an object that supports
the IEnumVARIANT interface, which
will be used to enumerate the
items in the collection. Note that
the name of this property must be
preceded with an underscore, and
this property must be marked as
restricted in the type library. The
dispid for the _NewEnum property
must be DISPID_NEWENUM (-4), and it

will be defined as follows in the
Delphi type library editor:

function _NewEnum: IUnknown

[propget, dispid $FFFFFFFC,

restricted]; safecall;

Languages such as Visual Basic
that support the For Each con-
struct will use this method to
obtain the IEnumVARIANT interface
needed to enumerate collection
items. More on this later.

Secondly, collections must con-
tain an Itemmethod that returns an
element from the collection based
on the index. The dispid for this
method must be 0, and it should be
marked with the default collec-
tion element flag. If we were to
implement a collection of IFoo
interface pointers, the definition
for this method in the type library
editor might look something like
this:

function Item(Index: Integer):

IFoo [propget, dispid $00000000,

defaultcollelem]; safecall;

Note that it is also acceptable for
the Index parameter to be an
OleVariant so that an integer,
string, or some other type of value
can index the item in question.

Thirdly, collections must con-
tain a Count property that returns
the number of items in the collec-
tion. This method would typically
be defined in the type library
editor as:

function Count: Integer [propget,

dispid $00000001]; safecall;

In addition to the above mentioned
rules, you should also follow the
following guidelines when creating
your own collection objects.

First, the property or method
that returns a collection should be
named with the plural of the name

➤ Listing 1

type
IMyDisp = interface(IDispatch)
function GetProp(Index: Integer): Integer; safecall;
procedure SetProp(Index, Value: Integer); safecall;
property Prop[Index: Integer]: Integer read GetProp write SetProp;

end;

58 The Delphi Magazine Issue 41

of the items in the collection. For
example, if you had a property that
returned a collection of listview
items, the property name would
probably be Items, while the name
of the item in the collection would
be Item. Likewise, an item name
called Foot would be contained in a
collection property called Feet. In
the rare case that the plural and
singular of a word are the same (a
collection of fish or deer, for exam-
ple), the collection property name
should be the name of the item
with ‘Collection’ tacked on the end
(FishCollectionor DeerCollection).

Next, collections that support
adding of items should do so using
a method called Add. The parame-
ters for this method vary depend-
ing on the implementation, but you
may want to pass parameters that
indicate the initial position of the
new item within the collection. The
Add method normally returns a
reference to the item added to the
collection.

Lastly, collections that support
deleting of items should do so
using a method called Remove.
Remove should take one parameter
that identifies the index of the item
being deleted, and this index
should behave semantically in the
same manner as the Item method.

A Delphi Implementation
If you’ve ever created ActiveX
controls in Delphi, you may have
noticed that there are fewer con-
trols listed in the combobox in the
ActiveX control wizard than there
are on the IDE’s component pal-
ette. This is because Inprise pre-
vents some controls showing in
the list using the Register
NonActiveX function. One such con-
trol that is available on the palette
but not in the wizard is the
TListView control found on the
Win32 page of the palette. The
reason the TListView control isn’t
shown in the wizard is because the
wizard doesn’t know what to do
with its Items property, which is of
type TListItems. Since the wizard
doesn’t know how to wrap this
property type in an ActiveX con-
trol, the control is simply excluded
from the wizard’s list rather than
allowing the user to create an

utterly useless ActiveX control
wrapper of a control.

However, in the case of
TListView, RegisterNonActiveX is
called with the axrComponentOnly
flag, which means that a
descendant of TListView will show
up in the ActiveX control wizard’s
list. By taking the minor detour of
creating a do-nothing descandent
of TListView called TListView2 and
adding it to the palette, I can then
create an ActiveX control that
encapsulates the listview control.
Of course, then I am faced with the
same problem of the wizard not
generating wrappers for the Items
property and having a useless
ActiveX control. Fortunately,
ActiveX control writing doesn’t
have to stop at the code generated
by the wizard and I am free to wrap
the Items property myself at this
point in order to make the control
useful. As you might be beginning
to suspect, a collection is the per-
fect way to encapsulate the Items
property of the listview.

In order to implement this col-
lection of listview items, I must
create new objects representing
the item and the collection, and
add a new property to the ActiveX
control default interface that
returns a collection. I begin by
defining the object representing an
item, which I will call ListItem. The
first step to creating the ListItem
object is to create a new Automa-
tion Object using the icon found on
the ActiveX page of the New Items
dialog. After creating the object, I
can fill out the proper-
ties and methods for
this object in the type
library editor.

For the purposes of
this demonstration, I
will add properties for
the Caption, Index,
Checked, and SubItems
properties of a
listview item. Simi-
larly, I create yet
another new Automa-
tion object for the
collection itself. I call
this Automation
object ListItems, and I
provide it with the
_NewEnum, Item, Count,

Add, and Remove methods I men-
tioned earlier. Finally, I add a new
property to the default interface of
the ActiveX control called Items
which returns a collection. Figure
1 shows these new interfaces,
coclasses, properties and meth-
ods in the type library editor.

After my interfaces for IListItem
and IListItems are completely
defined in the type library editor,
there is a little manual tweaking to
be done in the implementation
files generated for these objects.
Specifically, the default parent
class for a new automation object
is TAutoObject, however, these
objects will only be created inter-
nally (ie, not from a factory), so I
manually change the ancestor to
TAutoInfObject, which is more
appropriate for internally-created
automation objects. Also, since
these objects won’t be created
from a factory, I remove from the
units the initialization code that
creates the factories because it is
not needed.

Now that all of the infrastructure
is properly set up, it is time to
implement the ListItem and
ListItems objects. The ListItem
object is the most straightforward,
since it is a pretty simple wrapper
around a listview item. The code
for the unit containing this object
is shown in Listing 2.

Note that a ComCtrls.TListItem
is being passed in to the construc-
tor to serve as the listview item to

➤ Figure 1

January 1999 The Delphi Magazine 59

be manipulated by this Automa-
tion object.

The implementation of the List
Items collection object is a little
more complex. First, because the
object must be able to provide an
object supporting IEnumVARIANT in
order to implement the _NewEnum
property, I chose to support
IEnumVARIANTdirectly in this object.
Therefore, my TListItems class
supports both IListItems and
IEnumVARIANT. IEnumVARIANT con-
tains 4 methods (see Table 1).

The source code for the unit con-
taining the ListItems object is
shown in Listing 3. The only
method in this unit with a
non-trivial implementation is the
Next method. The celt parameter
of the Next method indicates how
many items should be retrieved.
The elt parameter contains an
array of TVarArgs with at least elt
elements. Upon return,
pceltFetched (if non-nil) should
hold the actual number of items
fetched. This method returns S_OK
when the number of items
returned is the same as the number
requested or S_FALSE otherwise.
The logic for this method iterates
over the array in elt and assigns a
TVarArg representing a collection
item to an element of the array.
Note the little trick I’m performing
to clear out the OleVariant after
assigning it to the array. This
ensures that the array will not be

unit LVItem;
interface
uses
ComObj, ActiveX, ComCtrls, LVCtrl_TLB, StdVcl, AxCtrls;

type
TListItem = class(TAutoIntfObject, IListItem)
private
FListItem: ComCtrls.TListItem;

protected
function Get_Caption: WideString; safecall;
function Get_Index: Integer; safecall;
function Get_SubItems: IStrings; safecall;
procedure Set_Caption(const Value: WideString);
safecall;

procedure Set_SubItems(const Value: IStrings); safecall;
function Get_Checked: WordBool; safecall;
procedure Set_Checked(Value: WordBool); safecall;

public
constructor Create(AOwner: ComCtrls.TListItem);

end;
implementation
uses ComServ;
constructor TListItem.Create(AOwner: ComCtrls.TListItem);
begin
inherited Create(ComServer.TypeLib, IListItem);
FListItem := AOwner;

end;
function TListItem.Get_Caption: WideString;
begin

Result := FListItem.Caption;
end;
function TListItem.Get_Index: Integer;
begin
Result := FListItem.Index;

end;
function TListItem.Get_SubItems: IStrings;
begin
GetOleStrings(FListItem.SubItems, Result);

end;
procedure TListItem.Set_Caption(const Value: WideString);
begin
FListItem.Caption := Value;

end;
procedure TListItem.Set_SubItems(const Value: IStrings);
begin
SetOleStrings(FListItem.SubItems, Value);

end;
function TListItem.Get_Checked: WordBool;
begin
Result := FListItem.Checked;

end;
procedure TListItem.Set_Checked(Value: WordBool);
begin
FListItem.Checked := Value;

end;
end.

➤ Listing 2

garbage collected. Were I not to do
this, the contents of elt could
potentially become stale if the
objects referenced by V are freed
when the Variant is finalized.

Similar to TListItem, the con-
structor for TListItems takes a
ComCtrls.TListItems as a parame-
ter and manipulates that object in
the implementation of its methods.

Finally, I complete the imple-
mentation of the ActiveX control
by adding the logic to manage the
Items property. First, I must add a
field to the object to hold the
collection.

type
TListViewX = class(
TActiveXControl,IListViewX)

private
...
FItems: IListItems;

end;

Then I assign FItems to a new
TListItems in the InitializeControl
method:

FItems :=
LVItems.TListItems.Create(
FDelphiControl.Items);

Lastly, the Get_Items method can
be implemented to simply return
FItems:

function TListViewX.Get_Items:
IListItems;

begin
Result := FItems;

end;

The real test to see whether my
collection works is to load the
control in Visual Basic 6 and try to
use the For Each construct with the
collection. Figure 2 shows my
simple VB test application
running.

Of the two command buttons
you see in Figure 2, Command1 adds
items to the listview, while
Command2 iterates over all of the
items in the listview using For Each
and adds exclamation points to
each Caption. The code for these
methods is shown in Listing 4.

Despite the feelings I know some
of the Delphi faithful have toward
VB, we must remember that VB is
the primary consumer of ActiveX
controls, and it’s very important to

➤ Table 1

Method Purpose

Next Retrieve the next n number of items in the collection.

Skip Skip over n items in the collection.

Reset Go back to the first element in the collection.

Clone Create a copy of this IEnumVARIANT.

60 The Delphi Magazine Issue 41

unit LVItems;
interface
uses
ComObj, Windows, ActiveX, ComCtrls, LVCtrl_TLB;

type
TListItems = class(TAutoIntfObject,
IListItems, IEnumVARIANT)

private
FListItems: ComCtrls.TListItems;
FEnumPos: Integer;

protected
{ IListItems methods }
function Add: IListItem; safecall;
function Get_Count: Integer; safecall;
function Get_Item(Index: Integer): IListItem; safecall;
procedure Remove(Index: Integer); safecall;
function Get__NewEnum: IUnknown; safecall;
{ IEnumVariant methods }
function Next(celt: Longint; out elt; pceltFetched:
PLongint): HResult; stdcall;

function Skip(celt: Longint): HResult; stdcall;
function Reset: HResult; stdcall;
function Clone(out Enum: IEnumVariant): HResult;
stdcall;

public
constructor Create(AOwner: ComCtrls.TListItems);

end;
implementation
uses ComServ, LVItem;
constructor TListItems.Create(AOwner: ComCtrls.TListItems);
begin
inherited Create(ComServer.TypeLib, IListItems);
FListItems := AOwner;

end;
function TListItems.Add: IListItem;
begin
Result := LVItem.TListItem.Create(FListItems.Add);

end;
function TListItems.Get__NewEnum: IUnknown;
begin
Result := Self;

end;
function TListItems.Get_Count: Integer;
begin
Result := FListItems.Count;

end;
function TListItems.Get_Item(Index: Integer): IListItem;
begin
Result := LVItem.TListItem.Create(FListItems[Index]);

end;
procedure TListItems.Remove(Index: Integer);
begin

FListItems.Delete(Index);
end;
function TListItems.Clone(out Enum: IEnumVariant): HResult;
begin
Enum := nil;
Result := S_OK;
try
Enum := TListItems.Create(FListItems);

except
Result := E_OUTOFMEMORY;

end;
end;
function TListItems.Next(celt: Integer; out elt;
pceltFetched: PLongint): HResult;

var
V: OleVariant;
I: Integer;

begin
Result := S_FALSE;
try
if pceltFetched <> nil then
pceltFetched^ := 0;

for I := 0 to celt - 1 do begin
if FEnumPos >= FListItems.Count then
Exit;

V := Get_Item(FEnumPos);
TVariantArgList(elt)[I] := TVariantArg(V);
// trick to prevent variant from being garbage
// collected, since it needs to stay alive because
// it is party of the elt array
TVarData(V).VType := varEmpty;
TVarData(V).VInteger := 0;
Inc(FEnumPos);
if pceltFetched <> nil then
Inc(pceltFetched^);

end;
except
end;
if (pceltFetched = nil) or ((pceltFetched <> nil) and
(pceltFetched^ = celt)) then
Result := S_OK;

end;
function TListItems.Reset: HResult;
begin
FEnumPos := 0;
Result := S_OK;

end;
function TListItems.Skip(celt: Integer): HResult;
begin
Inc(FEnumPos, celt);
Result := S_OK;

end;
end.

ensure that our controls function properly in that
environment.

Summary
That about covers it, from concept to implementation,
to testing. Collections provide powerful functionality
that can enable your controls and Automation servers
to function more smoothly in the world of COM. I think I

also demonstrated that collections are ter-
ribly difficult to implement, so it’s worth
your while to get in the habit of using them
when appropriate. If your luck is like mine,
once you become comfortable with collec-
tions, it’s very likely that someone will soon
come along and create yet a newer and
better container object for COM.

Steve Teixeira is the Director of Software
Development at DeVries Data Systems,
Inc. If you have questions or ideas for new
COM Corner articles, please email Steve at
steve@dvdata.com

➤ Above: Listing 3

Private Sub Command1_Click()
ListViewX1.Items.Add.Caption = "Delphi"

End Sub
Private Sub Command2_Click()
Dim Item As ListItem
Set Items = ListViewX1.Items
For Each Item In Items
Item.Caption = Item.Caption + "!!"
Next

End Sub

➤ Below: Listing 4

➤ Figure 2

	A Delphi Implementation
	Summary

